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Abstract—Real-time image quality assessment algorithms is an 

important, outcome research is dedicated to improving this 

practice. Towards this end, a design of real-time implementable 

full-reference image or video quality algorithms that are based 

on the Structural Similarity (SSIM) index and multi-scale SSIM 

(MS-SSIM) index preferred.  The proposed algorithms merged 

into one single updating process. LIVE image quality database 

used to evaluate their improvement in form of computational 

complexity. Experimental results show that the proposed 

algorithm is an effective alternative for real-time image 

Structural Similarity with low area cost (time). 

 

Index Terms—Real time, Structural Similarity, effective.  

 

I. INTRODUCTION 

Image quality assessment is an emerging field of signal 

processing. More or less defined as the task of designing an 

algorithm to automatically judge the perceived “quality” of a 

photograph, it remains a largely open problem. Latest trends 

indicate beginning of a new era in digital images and videos, 

digitized visual information. In addition to the increasing 

amount of available digital visual data, other factors make the 

problem of information extraction particularly complicated. 

First, users ask for more information to be extracted from their 

datasets, which requires increasingly complicated algorithms. 

Second, in many cases, the analysis needs to be done in 

real-time to reap the actual benefits. For instance, a security 

expert would strive for real-time analysis of the streaming 

video and audio data in conjunction. Managing and performing 

run-time analysis on such datasets is appearing to be the next 

big challenge in computing. 

Video quality evaluation is performed to describe the quality 

of a set of video sequences under study. Video quality can be 

evaluated objectively by mathematical models or subjectively 

by asking users for their rating. Also, the quality of a system 

can be determined offline (i.e., in a laboratory setting for 

developing new codec’s or services), or in-service to monitor 
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and ensure a certain level of quality. [1], while Full Reference 

Methods (FR) is FR metrics computes the quality difference by 

comparing the original video signal against the received video 

signal. Typically, every pixel from the source is compared 

against the corresponding pixel at the received video, with no 

knowledge about the encoding or transmission process in 

between. More elaborate algorithms may choose to combine the 

pixel-based estimation with other approaches such as described 

below. FR metrics are usually the most accurate at the expense 

of higher computational effort. 

The structural similarity (SSIM) index is a method for 

measuring the similarity between two images. The SSIM index 

is a full reference metric; in other words, the measuring of 

image quality based on an initial uncompressed or 

distortion-free image as reference. SSIM is designed to 

improve on traditional methods like peak signal-to-noise ratio 

(PSNR) and mean squared error (MSE), which have proven to 

be inconsistent with human eye perception. 

The difference with respect to other techniques mentioned 

previously such as MSE or PSNR is that these approaches 

estimate perceived errors; on the other hand, SSIM considers 

image degradation as perceived change in structural 

information. Structural information is the idea that the pixels 

have strong inter-dependencies especially when they are 

spatially close. These dependencies carry important 

information about the structure of the objects in the visual 

scene. 

A research topic that has attracted a great deal of attention in 

the past decade is to design novel objective image similarity or 

dissimilarity measures that correlate well with perceptual 

image fidelity or distortion [2]. The Structural Similarity 

(SSIM) index is widely used algorithm in FR image quality 

assessment applications. A number of algorithms have been 

derived from SSIM: Multi-scale SSIM (MS-SSIM), Percentile 

Pooling SSIM (PSSIM) [3], Complex-Wavelet SSIM index 

(CW-SSIM) [5], Gradient-based Structural Similarity 

(G-SSIM) [6], and Three-Component Weighted SSIM [7]. All 

these derivative algorithms aim to improve the accuracy but 

inevitably increase the computational complexity.  

II. PRELIMINARY  

A. Single Scale Structural Similarity Index 

Based on the trade-offs that the Human Visual system (HVS) 

is highly adapted for extracting structural information, the 

SSIM algorithm assesses three terms between two 
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non-negative signals a and b: luminance l(a, b), contrast c(a, 

b), and structure s(a, b): 
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The two constant value C1 and C2 are defined to avoid the 

instability when the denominators are very close to zero. These 

two values are further determined by two subjective selected 

value K1, K2 and the dynamic range of pixel value C1 = (K1L)2, 

C2 = (K2L)2. Where C1 = (K1L)2, C2 = (K2L)2, and C3 = C2/2 are 

small constants; L is the dynamic range of the pixel values, and 

K1 << 1 and K2 << 1 are scalar constants. The constants C1, C2 

and C3 provide spatial masking properties and ensure stability 

when the denominator approaches zero. Combining the three 

terms, the general form of SSIM is: 
     

),(),(.),(),( basbacbalbaSSIM   

In equation, three component are clearly defined to measure 

the degree of linear correlation between image a and b. The 

first one l(a,b), measure how the mean luminance is between 

the two image while the second c(a,b), estimated the contrast. 

The third one s(a,b), is the correlation of structure. The 

parameter  ,  and  can be used to adjust the relative 

importance of the three component. 
 

By setting 1  and C3 = C2/2 
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SSIM index value between a and b generally is defined as the 

average of all SSIM index values calculated within an 11 x 11 

circular symmetric Gaussian weighting function window 

passed over image, although other “pooling” strategies exist 

[4]. The Gaussian weighting window prevents artifacts arising 

from a discontinuous truncation of the image when computing 

the local values of the SSIM index map. 

A. Multi-scale Structural Similarity Index 

The distance between the image and the observer affects the 

observer’s perceived image quality. The results of subjective 

image tests will vary as the viewing distance changes. In 

addition, images are naturally multi-scale, and both distortions 

and image features possess multi-scale attributes. 

For these reasons, the Multi-scale SSIM (MS-SSIM) index was 

developed. 

In MS-SSIM, quality assessment is performed on multiple 

scales of the reference and the distorted images. Low-pass 

filtering and dyadic down-sampling is applied iteratively, and 

elements of the SSIM index applied at each scale, indexed from 

1 (original image) through and the finest scale M obtained after 

M − 1 iterations. 

At each scale i, the contrast and structure terms are 

calculated: cj(a, b) and sj(a, b) respectively. The luminance 

term is computed only at scale M and represented as lM(a, b). 

The overall quality evaluation is obtained by combining the 

measurement over scales: 
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III. ISSUANCE ALGORITHM 

The structure term of the SSIM index is independent of the 

luminance and often plays a less significant perceptual role in 

predicting visual quality that the other terms. The propose 

eliminating it to reduce complexity. Another important item is 

preserve the luminance term since images may suffer from a 

luminance bias, even if image quality databases do not 

explicitly include such distortions. Nevertheless, focus on 

expend as little computation as possible in the luminance term.  

The luminance term transform in Fast SSIM with utilizes an 

8 x 8 square window, and an integral image technique [9] to 

compute the luminance similarity between the original and test 

images. 

By utilizing integral image, extracting the mean value of the 

pixels within a square window can be made quite efficient. As 

shown in Fig. 1, the value of the integral image at (a, b) is the 

sum of the pixels values above and to the left of (a, b), and 

including the value at (a, b). 

Computing the sum over any rectangular area can be 

achieved with only two additions and one subtraction. As 

shown in Fig. 1, the sum of the pixel values within the 

rectangle D can be computed using four array references. The 

value of the integral image at location 1 is the sum of the pixels 

in rectangle A. The value at location 2 is L+M, at location 3 is 

L+O, and at location 4 is L+M+O+P. The sum over region D 

can be computed as ‘4’+’1’-(‘2’+’3’) where ‘i’ is the value of 

the integral image at location i. 

 
Fig. 1. Left: Integral Image. Right: How To Compute Sum Value Over 

Region P In Integral Image Domain. 
 

Using the integral image and a square window, the 

complexity of computing the luminance term is reduced 

considerably [8]. Assuming the window size is n x n, the 

standard SSIM index algorithm (using a Gaussian weighted 

window) requires n2 multiplies and (n2-1) additions to calculate 

the mean value, while the proposed Fast SSIM algorithm only 

requires 3 additions and 1 subtraction. 
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IV. DECRYPTION ALGORITHM 

The computation of the variance term is the most time 

consuming part of the SSIM algorithm. In order to lower the 

complexity, we substitute a gradient value in Fast SSIM. 

Following Field, while images of real-world scenes vary greatly 

in their absolute luma and chroma distributions, the gradient 

magnitudes of natural images generally obey heavy tailed 

distribution laws [9]. Indeed, some no-reference image quality 

assessment algorithms [10-12] use the gradient image to assess 

blur severity. Similarly, the performance of the Gradient-based 

SSIM index [6] suggests that applying SSIM on the gradient 

magnitude may yield higher performance. The gradient is 

certainly responsive to image variation. Moreover, the gradient 

magnitude has low complexity and is amenable to integer-only 

implementation. 

We generate the gradient image using the Roberts gradient 

templates. The Roberts Cross operator performs a simple, 

quick to compute, 2-D spatial gradient measurement on an 

image. 

The gradient magnitude is approximated by 

   jijil  ,min)
4

1
(,max  

where ∇i and ∇j are the Roberts template responses in the 

two orthogonal directions. This approximation is based upon a 

simple expansion of the gradient. The contrast c(x, y) and 

structure s(x, y) terms of the Fast SSIM index algorithm are 

then defined: 
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where C3 = C2/2, and 
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where 
ix  and 

iy  are the gradient magnitude values of the 

images x and y at spatial coordinate i, estimated using the 

approximation (1). 

The Fast SSIM index between signals x and y is then: 
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In MS-SSIM, the contrast and structural terms are calculated 

over multiple scales. Therefore, the Fast MS-SSIM index 

between signal x and y is defined as: 
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Another modification that we make is to use an integer 

approximation to the Gaussian weighting window. In this way, 

the computation of the contrast and structural terms uses only 

integer operations. 8 x 8 windows. The simplifications include: 

all computations reduced to integer operations, with square 

roots eliminated. 

V. OPTIMIZATION ALGORITHM 

Optimization is an essential process when implementing an 

algorithm for real time applications. We propose to apply 

parallel computing and sub-sampling on the Fast SSIM index 

algorithm in order to achieve the best performance. 

Data-level parallelization and frame–level parallelization 

are adopted in this study to optimize the parallel computing. 

After optimizing computation of the luminance part, about 

86% of the computation is consumed on the contrast and 

structure terms. Since most operations in Fast SSIM are 

integer-only, Fast SSIM is amenable to Single Instruction 

Multiple Data (SIMD) optimization. Also, since Fast SSIM 

does not currently use any dependency between frames, it is 

natural to conduct frame level parallelization. 

Regarding sub-sampling, we suggest that the contrast and 

structure terms need not be computed at the original scale in 

Fast MS-SSIM [15]. Since humans are less sensitive to higher 

spatial frequencies, skipping computation of the contrast and 

structure terms at the first scale appears to not lower 

performance, but it does increase the computation speed 

dramatically. The experiment results shown in the next section 

support this assumption. 

VI. EXPERIMENTAL AND RESULT  

We test a number of image quality assessment algorithms 

using the LIVE database [13]. The database includes DMOS 

subjective scores for each image and 6 types of distortions. The 

distortions in the first stage, the database contained 460 

images, where 116 were original images and the rest 344 are 

JPEG and JPEG2000 compressed. Two sample images 

(cropped from 768 x 512 to 256 x 192 for visibility) are shown 

below. Note that quantization in JPEG and JPEG2000 

algorithms often results in smooth representations of fine detail 

regions (e.g., the tiles in the upper image and the trees in the 

lower image). Compared with other types of regions, these 

regions may not be worse in terms of point wise difference 

measures (as shown in the absolute error map). However, since 

the structural information of the image details are nearly 

completely lost, they exhibit poorer visual quality. Close 

piece-by-piece comparison of the SSIM index and the absolute 

error maps, we observe that the SSIM index is more consistent 

with perceived quality measurement. Note: in either distortion 

or quality maps, brighter means better quality. 

Fast-SSIM was evaluated against the LIVE DMOS scores 

using the Spearman Rank Order Correlation Coefficient 

(SROCC). The performance numbers on speed were tested on a 

768 x 512 video with 250 frames. All experiments were 

conducted on a Intel® Core™ i7-5500U 2.4GHz platform, 
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except the experiment result on multi-threading optimization, 

which was run on an Intel® Core™ i7-4790 Processor (3.6 

GHz, 8 MB cache, 4 cores) platform [14]. 

 
Fig. 2. SROCC SSIM Algorithms Evaluation. 

 

 
Fig. 3. Speed(Fps) SSIM Algorithms Evaluation. 

 

 
Fig. 4. SROCC MS-SSIM Algorithms Evaluation. 

 

Fig. 2 to Fig. 5 makes it clear that the Fast SSIM and Fast 

MS-SSIM algorithms suffer no performance loss in terms of 

their subjective scores to predict the perceptual quality of test 

images capability; the SROCC scores are very close. 

Nevertheless, looking at the performance improvement on 

speed, the improvement from SSIM to Fast SSIM is 155% 

(from 3.44 fps to 8.76 fps). Thus Fast SSIM is 2.68 times faster 

than SSIM. For optimization, Intel SSE2 instructions were 

implemented to calculate the mean and correlation of the 

radiant images, to demonstrate the improvement on applying  

 
Fig. 5. Speed(fps) MS-SSIM algorithms evaluation. 

data-level parallelization. As shown in Table 1, Fast SSIM with 

SIMD enhances the performance from 8.76 fps to 17.83 fps. 

Finally, with multithreading optimization, Fast SSIM reaches 

62.23 fps on an Intel® Core™ i7-4790 Processor (3.6 GHz, 8 

MB cache, 4 cores) platform, which qualifies the algorithm for 

real-time application. 

The performance numbers for Fast MS-SSIM are shown in 

Table 2. The modifications in Fast MS-SSIM are the same as 

the modification in Fast SSIM, except that we propose to skip 

the analysis on contrast and structural terms on the original 

scales. Table 2 shows that the SROCC scores of Fast MS-SSIM 

and Fast MS-SSIM with sub-sampling are very close, but both 

are a little lower than MS-SSIM. However, if we compare the 

performance of Fast MS-SSIM with Fast MS-SSIM with 

sub-sampling, Fast MS-SSIM with sub-sampling yields better 

performance for assessing image quality, at speeds adequate for 

real-time application. 

VII. CONCLUSION REMARKS  

Proposed Fast SSIM and Fast MS-SSIM index algorithms 

are verified their performance. The experimental results show 

that the proposed algorithms not only have competitive 

performance with SSIM and MS-SSIM for assessing image 

quality, but have much lower computational complexity. 

Indeed, the proposed algorithms achieve real-time 

performance with simple optimization. 

 

 

2015 Int'l Conference on Intelligent Computing, Electronics Systems and Information Technology (ICESIT-15) Aug 25-26, 2015 Kuala Lumpur (Malaysia)

http://dx.doi.org/10.15242/IAE.IAE0815017 44 



  

ACKNOWLEDGMENT 

The authors would like to thank the anonymous reviewers 

for their constructive comments. To my parents, wife and kids 

for giving me love supports and encouragement. Nothing 

would have been possible without Allah, the Creator and Lord 

of the universe. 

REFERENCES 

(Periodical style)  

[1] S. Chikkerur, V. Sundaram, M. Reisslein, and L. J. Karam, “Objective video 

quality assessment methods: A classification, review, and performance 

comparison. Broadcasting,” IEEE Transactions on, vol. 57(2), pp. 

165-182, 2011. 

http://dx.doi.org/10.1109/tbc.2011.2104671 

[2] E. Y. Chan, W. K. Ching, M. K. Ng, and J. Z Huang, “An optimization 

algorithm for clustering using weighted dissimilarity measures.” Pattern 

recognition, vol. 37(5), pp. 943-952, 2004. 

http://dx.doi.org/10.1016/j.patcog.2003.11.003 

[3] M. Seufert, M. Slanina, S. Egger, and M. Kottkamp, “To pool or not to pool: 

A comparison of temporal pooling methods for HTTP adaptive video 

streaming,” In Quality of Multimedia Experience (QoMEX), 2013 Fifth 

International Workshop on IEEE, pp.. 52-57, July 2013. 

http://dx.doi.org/10.1109/qomex.2013.6603210 

[4] C. Li, and A. C. Bovik, “Content-partitioned structural similarity index for 

image quality assessment,” Signal Processing: Image Communication, 

vol. 25(7), pp. 517-526, 2010. 

http://dx.doi.org/10.1016/j.image.2010.03.004 

[5] K. Okarma, D. Frejlichowski, P. Czapiewski, P. Forczmański, and R. 

Hofman, “Similarity estimation of textile materials based on image quality 

assessment methods. In Computer Vision and Graphics,” Springer 

International Publishing, pp. 478-485, 2014. 

[6] G. H. Chen, C. L. Yang, and S. L. Xie, “Gradient-based structural similarity 

for image quality assessment,” In Image Processing, 2006 IEEE 

International Conference on IEEE, pp. 2929-2932, October 2006. 

http://dx.doi.org/10.1016/j.image.2010.03.004 

[7] C. Li, and A. C. Bovik, “Three-component weighted structural similarity 

index,” In IS&T/SPIE Electronic Imaging -International Society for 

Optics and Photonics, pp. 72420Q-72420Q, January 2009. 

[8] D. M. Rouse, and S. S. Hemami, “Understanding and simplifying the 

structural similarity metric,” In Image Processing, 2008. ICIP 2008. 15th 

IEEE International Conference on IEEE, pp. 1188-1191, October 2008. 

http://dx.doi.org/10.1109/icip.2008.4711973 

[9] X. Huang, and S. Forchhammer, “Improved side information generation for 

distributed video coding,” In Multimedia Signal Processing, 2008 IEEE 

10th Workshop on IEEE, pp. 223-228, October 2008. 

[10] E. Cohen, and Y. Yitzhaky “No-reference assessment of blur and noise 

impacts on image quality,” Signal, image and video processing, vol. 4(3), 

pp. 289-302, 2010. 

[11] F. Meyer, “Color image segmentation. In Image Processing and its 

Applications,” International Conference on IET, pp. 303-306, 1992. 

[12] A. P Carleer, O. Debeir, and E. Wolff, “Assessment of very high spatial 

resolution satellite image segmentations,” Photogrammetric Engineering & 

Remote Sensing, vol. 71(11), pp. 1285-1294, 2005. 

http://dx.doi.org/10.14358/PERS.71.11.1285 

[13] H.R. Sheikh, Z. Wang, L.K. Cormack, A.C. Bovik, “LIVE image quality 

assessment database,” Release 2, [online]: Available at: 

http://live.ece.utexas.edu/research/quality/subjective.htm 

[14] A. K. Moorthy, and A. C. Bovik, “Visual importance pooling for image 

quality assessment,” Selected Topics in Signal Processing, IEEE Journal, 

vol. 3(2), pp. 193-201, 2009. 

http://dx.doi.org/10.1109/JSTSP.2009.2015374 

[15] D. M., Rouse, and S. S.  Hemami, S. S. (2008, February). Analyzing the role 

of visual structure in the recognition of natural image content with 

multi-scale SSIM. In Electronic Imaging 2008 (pp. 680615-680615). 

International Society for Optics and Photonics. 

 

Khairulnizam Othman received the M.S. degree in 

Mechatronic engineering from the University 

Malaysia Perlis, Perlis, Malaysia, in 2010. He is 

currently pursuing the PhD in Electrical and 

Electronic Engineering at The University Tun 

Hussein Onn Malaysia at Johore, malaysia. He is 

currently Lectrure the Embedded Computing 

Research Cluster Microelectronics and 

Nanotechnology – Shamsuddin Research Centre 

(MiNT-SRC), The University Tun Hussein Onn 

Malaysia. His research interests include FPGA, 

image and video quality assessment, image and 

embedded medical image processing. 

 

 Afandi Ahmad, PhD is a lecturer at Universiti 

Tun Hussein Onn Malaysia (UTHM) within the 

Department of Computer Engineering in the 

Faculty of Electrical and Electronic Engineering. 

He joined UTHM as a tutor in May 2002 and 

appointed as a lecturer in December 2003. He 

obtained his BSc in Electrical Engineering 

(Computer Technology) from Universiti Teknologi 

Malaysia (UTM-ITTHO) and MSc in 

Microelectronics from Universiti Kebangsaan 

Malaysia (UKM) in 2002 and 2003, respectively. 

He received his PhD in Electronic and Computer 

Engineering from Brunel University, West London 

in 2010. He has been awarded a number of prizes and travel grants and has 

published in impact factor’s journals as well as five star international 

conferences and actively contributes as a reviewer in IEEE TCVT, Springer and 

Hindawi. He is a graduate member of the IEM, professional member of ACM, 

member of the IEEE, IET, ASEE and IAENG. His research interests include: 

Embedded computing systems, 3-D/4-D medical image analysis and diagnosis, 

partial and dynamic reconfigurable architectures, 3-D/4-D compression and 

also engineering education. 

 

 

 

   

2015 Int'l Conference on Intelligent Computing, Electronics Systems and Information Technology (ICESIT-15) Aug 25-26, 2015 Kuala Lumpur (Malaysia)

http://dx.doi.org/10.15242/IAE.IAE0815017 44 

http://dx.doi.org/10.1109/tbc.2011.2104671
http://dx.doi.org/10.1109/tbc.2011.2104671
http://dx.doi.org/10.1109/tbc.2011.2104671
http://dx.doi.org/10.1109/tbc.2011.2104671
http://dx.doi.org/10.1109/tbc.2011.2104671
http://dx.doi.org/10.1016/j.patcog.2003.11.003
http://dx.doi.org/10.1016/j.patcog.2003.11.003
http://dx.doi.org/10.1016/j.patcog.2003.11.003
http://dx.doi.org/10.1016/j.patcog.2003.11.003
http://dx.doi.org/10.1109/qomex.2013.6603210
http://dx.doi.org/10.1109/qomex.2013.6603210
http://dx.doi.org/10.1109/qomex.2013.6603210
http://dx.doi.org/10.1109/qomex.2013.6603210
http://dx.doi.org/10.1109/qomex.2013.6603210
http://dx.doi.org/10.1016/j.image.2010.03.004
http://dx.doi.org/10.1016/j.image.2010.03.004
http://dx.doi.org/10.1016/j.image.2010.03.004
http://dx.doi.org/10.1016/j.image.2010.03.004
http://dx.doi.org/10.1016/j.image.2010.03.004
http://dx.doi.org/10.1016/j.image.2010.03.004
http://dx.doi.org/10.1016/j.image.2010.03.004
http://dx.doi.org/10.1016/j.image.2010.03.004
http://dx.doi.org/10.1109/icip.2008.4711973
http://dx.doi.org/10.1109/icip.2008.4711973
http://dx.doi.org/10.1109/icip.2008.4711973
http://dx.doi.org/10.1109/icip.2008.4711973
http://dx.doi.org/10.14358/PERS.71.11.1285
http://dx.doi.org/10.14358/PERS.71.11.1285
http://dx.doi.org/10.14358/PERS.71.11.1285
http://dx.doi.org/10.14358/PERS.71.11.1285
http://dx.doi.org/10.1109/JSTSP.2009.2015374
http://dx.doi.org/10.1109/JSTSP.2009.2015374
http://dx.doi.org/10.1109/JSTSP.2009.2015374
http://dx.doi.org/10.1109/JSTSP.2009.2015374



